Analysis and Results

Assumptions/values:
$R_{\text {planet }}=R_{p}=2.50 \times R_{\text {earth }}$
$M_{\text {planet }}=9.70 \times M_{\text {earth }}$
$R_{\text {star }}=R_{s}=0.65 \times R_{\text {sun }}$
Mid transit time $=0.46$ days
Transit depth (estimated from curve) $=\mathrm{td}=0.18 \%$
$\mathrm{M}_{\text {star }}=0.73 \times \mathrm{M}_{\text {sun }}=1.45153 \times 10^{30} \mathrm{~kg}$
$\mathrm{G}=6.6743 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
$1 \mathrm{AE}=149597870.7 \mathrm{~km}$
$R_{\text {earth }}=6378 \mathrm{~km}$
$\mathrm{R}_{\text {sun }}=695700 \mathrm{~km}$
$\mathrm{M}_{\text {sun }}=1.9884 \times 10^{30} \mathrm{~kg}$
$M_{\text {earth }}=5.9722 \times 10^{24} \mathrm{~kg}$

These are the data that were determined through the "allesfitter" program, which used data acquired by CHEOPS using the transit method.

Radius of the planet:

$$
\begin{aligned}
\operatorname{td}[\%] & =\frac{\pi \cdot R_{p}^{2}}{\pi \cdot R_{s}^{2}} \cdot 100 \\
L R_{p} & =\sqrt{\frac{t d}{100} \cdot R_{S}^{2}} \\
& =\sqrt{\frac{0.18}{100} \cdot\left(0.65 \cdot R_{S U N}\right)^{2}} \\
& =0.028 \cdot R_{\text {SUN }} \\
& =0.02758 \cdot 109 R_{E A R T H} \\
& =3.0059 \cdot R_{\text {EARTH }} \\
& =15171.63 \text { um } \\
& =1,9 \cdot 10 \text { um }
\end{aligned}
$$

Orbital period:

$$
\begin{aligned}
& 18.8797 \text { dares }= \\
= & 453.118 \mathrm{n} \\
= & 16311206.08 \mathrm{~s} \\
= & 1,63 \cdot 10^{6} \mathrm{~s}
\end{aligned}
$$

Orbital distance:

$$
\begin{aligned}
& T^{2}=\left(\frac{4 \pi^{2}}{G \cdot M_{\text {STAR }}}\right) \cdot d^{3} \\
& L d=\sqrt[3]{\frac{G \cdot M_{S T A R}}{4 \pi^{2}} \cdot T^{2}} \\
& =\sqrt[3]{\frac{6.6743 \cdot 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \cdot 1.45153 \cdot 10^{30} \mathrm{~kg}}{4 \pi^{2}} \cdot 1631206.08 \mathrm{~s}} \\
& =1.8650886 \cdot 10^{10} \mathrm{~m} \\
& =18690886 \mathrm{~km} \\
& \text { in au: } d: 145597870.7 \mathrm{an} \\
& =0.124941 \mathrm{am}
\end{aligned}
$$

Density (by determining the Volume):

$$
\begin{aligned}
V_{p} & =\frac{4}{3} \pi \cdot R^{3}=\frac{4}{3} \pi \cdot\left(R_{p}\right)^{3} \\
& =\frac{4}{3} \cdot \pi \cdot\left(3.0059 \cdot\left(R_{E A R T H}\right)^{3}\right. \\
& =1.6603065 \cdot 10^{3} \mathrm{~km}^{3}
\end{aligned}
$$

$$
\begin{aligned}
S=\frac{M}{V} & =\frac{M_{p}}{V_{p}} \\
& =\frac{9.70 \cdot M_{\text {CARTH }}}{1.6603065 \cdot 10^{13} \mathrm{um}^{3}} \\
& =\frac{9.70 \cdot 5.9722 \cdot 10^{24} \mathrm{ug}}{1.6603065 \cdot 10^{13} \mathrm{um}^{3}} \\
& =348913.5 \frac{\mathrm{~kg}}{\mathrm{um}^{3}} \\
& =3.49 \cdot 10^{5} \frac{\mathrm{~kg}}{\mathrm{um}^{3}}
\end{aligned}
$$

Converting to $\mathrm{g} / \mathrm{cm}^{3}$:

$$
\begin{aligned}
& \frac{3.45 \cdot 10^{5} \mathrm{ug}}{1} \mathrm{um}^{3} \\
= & \frac{3.45 \mathrm{~g}}{10^{7} \mathrm{~cm}^{3}}=3.49 \cdot 10^{-7}
\end{aligned}
$$

